A New Two Derivative FSAL Runge-Kutta Method of Order Five in Four Stages

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedded 5(4) Pair Trigonometrically-Fitted Two Derivative Runge- Kutta Method with FSAL Property for Numerical Solution of Oscillatory Problems

Based on First Same As Last (FSAL) technique, an embedded trigonometrically-fitted Two Derivative Runge-Kutta method (TDRK) for the numerical solution of first order Initial Value Problems (IVPs) is developed. Using the trigonometrically-fitting technique, an embedded 5(4) pair explicit fifth-order TDRK method with a “small” principal local truncation error coefficient is derived. The numerical...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

High Order Explicit Two - Step Runge - Kutta

In this paper we study a class of explicit pseudo two-step Runge-Kutta methods (EPTRK methods) with additional weights v. These methods are especially designed for parallel computers. We study s-stage methods with local stage order s and local step order s + 2 and derive a suucient condition for global convergence order s+2 for xed step sizes. Numerical experiments with 4-and 5-stage methods sh...

متن کامل

A Fourth Order Multirate Runge-Kutta Method with Error Control

To integrate large systems of ordinary differential equations (ODEs) with disparate timescales, we present a multirate method with error control that is based on embedded, explicit Runge-Kutta (RK) formulas. The order of accuracy of such methods depends on interpolating certain solution components with a polynomial of sufficiently high degree. By analyzing the method applied to a simple test eq...

متن کامل

NINE - STAGE MULTI - DERIVATIVE RUNGE – KUTTA METHOD OF ORDER 12 Truong Nguyen - Ba

A nine-stage multi-derivative Runge–Kutta method of order 12, called HBT(12)9, is constructed for solving nonstiff systems of first-order differential equations of the form y′ = f(x, y), y(x0) = y0. The method uses y′ and higher derivatives y(2) to y(6) as in Taylor methods and is combined with a 9-stage Runge–Kutta method. Forcing an expansion of the numerical solution to agree with a Taylor e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Baghdad Science Journal

سال: 2020

ISSN: 2411-7986,2078-8665

DOI: 10.21123/bsj.2020.17.1.0166