A New Two Derivative FSAL Runge-Kutta Method of Order Five in Four Stages
نویسندگان
چکیده
منابع مشابه
Embedded 5(4) Pair Trigonometrically-Fitted Two Derivative Runge- Kutta Method with FSAL Property for Numerical Solution of Oscillatory Problems
Based on First Same As Last (FSAL) technique, an embedded trigonometrically-fitted Two Derivative Runge-Kutta method (TDRK) for the numerical solution of first order Initial Value Problems (IVPs) is developed. Using the trigonometrically-fitting technique, an embedded 5(4) pair explicit fifth-order TDRK method with a “small” principal local truncation error coefficient is derived. The numerical...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملHigh Order Explicit Two - Step Runge - Kutta
In this paper we study a class of explicit pseudo two-step Runge-Kutta methods (EPTRK methods) with additional weights v. These methods are especially designed for parallel computers. We study s-stage methods with local stage order s and local step order s + 2 and derive a suucient condition for global convergence order s+2 for xed step sizes. Numerical experiments with 4-and 5-stage methods sh...
متن کاملA Fourth Order Multirate Runge-Kutta Method with Error Control
To integrate large systems of ordinary differential equations (ODEs) with disparate timescales, we present a multirate method with error control that is based on embedded, explicit Runge-Kutta (RK) formulas. The order of accuracy of such methods depends on interpolating certain solution components with a polynomial of sufficiently high degree. By analyzing the method applied to a simple test eq...
متن کاملNINE - STAGE MULTI - DERIVATIVE RUNGE – KUTTA METHOD OF ORDER 12 Truong Nguyen - Ba
A nine-stage multi-derivative Runge–Kutta method of order 12, called HBT(12)9, is constructed for solving nonstiff systems of first-order differential equations of the form y′ = f(x, y), y(x0) = y0. The method uses y′ and higher derivatives y(2) to y(6) as in Taylor methods and is combined with a 9-stage Runge–Kutta method. Forcing an expansion of the numerical solution to agree with a Taylor e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Baghdad Science Journal
سال: 2020
ISSN: 2411-7986,2078-8665
DOI: 10.21123/bsj.2020.17.1.0166